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Significance

To obtain rewards in changing and uncertain environments, animals must adapt their behavior.
We found that mouse choice and trial-to-trial switching behavior in a dynamic and probabilistic
two-choice  task  could  be  modeled  by  equivalent  theoretical,  algorithmic,  and  descriptive
models. These models capture components of evidence accumulation, choice history bias,
and stochasticity in mouse behavior. Furthermore, they reveal that mice adapt their behavior
in different environmental  contexts by modulating their  level  of  stickiness to their  previous
choice. Despite deviating from the behavior of a theoretically ideal observer, the empirical
models achieve comparable levels of near-maximal reward. These results make predictions to
guide interrogation of the neural mechanisms underlying flexible decision-making strategies.

In probabilistic and nonstationary environments, individuals must use internal and external
cues to flexibly make decisions that lead to desirable outcomes. To gain insight into the
process by which animals choose between actions, we trained mice in a task with time-
varying reward probabilities. In our implementation of such a two-armed bandit task, thirsty
mice use information about recent action and action–outcome histories to choose between
two ports that  deliver  water  probabilistically.  Here we comprehensively modeled choice
behavior  in  this  task,  including  the  trial-to-trial  changes  in  port  selection,  i.e.,  action
switching behavior. We find that mouse behavior is, at times, deterministic and, at others,
apparently  stochastic.  The  behavior  deviates  from that  of  a  theoretically  optimal  agent
performing Bayesian inference in a hidden Markov model (HMM). We formulate a set of
models based on logistic regression, reinforcement learning, and sticky Bayesian inference
that  we demonstrate are mathematically  equivalent  and that  accurately describe mouse
behavior.  The  switching  behavior  of  mice  in  the  task  is  captured  in  each  model  by  a
stochastic action policy, a history-dependent representation of action value, and a tendency
to repeat actions despite incoming evidence. The models parsimoniously capture behavior
across different environmental conditionals by varying the stickiness parameter, and like
the mice,  they achieve nearly  maximal  reward rates.  These results  indicate that  mouse

Mice exhibit stochastic and efficient action switching during probabilist... blob:https://www.pnas.org/4393bb7c-cc19-47be-8956-c3e1a78f7661

1 of 26 2024-11-24, 10:08 p.m.

https://www.pnas.org/topic/type/research-article
https://www.pnas.org/topic/type/research-article
https://www.pnas.org/topic/neuro
https://www.pnas.org/topic/neuro
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#aff1
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#aff1
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#aff2
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#aff2
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#aff1
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#aff1
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#aff2
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#aff2
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#aff3
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#aff3
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#aff4
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#aff4
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#cor1
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#cor1
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#aff1
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#aff1
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#aff2
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#aff2
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#cor1
https://www.pnas.org/reader/content/18002477ccb/10.1073/pnas.2113961119/format/epub/EPUB/xhtml/index.xhtml?hmac=1732514859-IDEq7G6onYBsHviKhOCJmywEbb5%2FPVq1y81Jj2%2BOwC0%3D#cor1
https://doi.org/10.1073/pnas.2113961119
https://doi.org/10.1073/pnas.2113961119


behavior  reaches near-maximal  performance with  reduced action switching and can be
described by a set of equivalent models with a small number of relatively fixed parameters.

decision making │ stochastic choice │ perseveration │ Bayesian inference │ explore–exploit
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Animals  select  appropriate  actions  to  achieve  their  goals.  Furthermore,  animals  adapt  their
decision-making  process  as  the  environment  changes.  During  foraging,  for  example,  animals
make decisions about when and where to search for food to safely acquire sufficient nutrients. This
requires balancing the trade-off between exploiting known sources of food versus continuing to
explore  unknown,  potentially  more  profitable  options.  In  a  dynamic  environment,  continued
exploration and adaptation are required to detect and react to changing conditions, such as the
depletion or appearance of a food source, that may influence what decision is optimal at a given
time. Inherent in this process is the ability to accumulate evidence about the value of various
actions  from  previous  experience.  Many  neuropsychiatric  diseases  are  associated  with
perturbations of evidence-dependent action selection (i.e., cognitive and/or behavioral flexibility),
making  individuals  with  the  disease  resistant  to  updating  action  plans  despite  changes  in
environmental contingencies (reviewed in refs. 1–4).

The dynamic multiarmed bandit task is an experimental paradigm used to investigate analogs
of these decision-making behaviors in a laboratory setting (5–13), including in normotypic humans
and those with disease (14–16). In this task, the experimental subject chooses between a small
number of actions, each of which offers a nonstationary probability of reward. The dynamic reward
contingencies  require  the  players  to  flexibly  modulate  their  actions  in  response  to  evidence
accumulated over multiple trials. Therefore, switching between behaviors is a key component of
performing this task. However, analysis of behavior in this task is often reduced to examining the
agent’s selection of the higher rewarding port or to the detection of a state transition.

Several  classes of  models have been used to model  behavior  in two-armed or multiarmed
bandit tasks, which make different assumptions about the underlying decision-making process and
focus on different aspects of the behavioral  output.  For example, theory-guided ideal observer
models  assume  that  agents  learn  the  dynamics  of  reward  contingencies  and  use  Bayesian
inference to identify the optimal action on each trial (16–18). Model-free reinforcement learning
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strategies (19), like the Rescorla–Wagner model (20), are more algorithmic in nature. Rather than
assuming knowledge of reward contingency dynamics, these models maintain a running estimate
of  the  value  of  different  actions  (9,  10,  14).  Similarly,  drift-diffusion  models  explicitly  model
evidence accumulation as an inertial process in order to explain hysteresis in action selection (21–
23). Finally, descriptive models make few assumptions about the information integration process
but simply predict future behavior given past actions and outcomes using, for example, a logistic
regression (6, 13). These efforts have provided insight into how simple algorithms can reduce a
series of actions and outcomes to features that might be represented in the brain, facilitating the
identification of neural correlates of action value and belief state representations (6, 10–12, 24).
Furthermore, by enabling the differentiation of trials in which behavior deviates from the action with
the highest expected value, such models have revealed neural activity related to exploration (8,
25). However, in evaluating these various models, trials in which the animal switches between
actions are typically not explicitly considered, and because these are a small minority of trials,
failure to model them correctly has little impact on overall model accuracy across all trials.

Here we develop a statistical analysis of the relatively infrequent subset of trials in which the
agent switches between actions, enabling examination of the features that contribute to the flexible
and exploratory components of behavior. We use these models to study mouse behavior in a two-
armed bandit task and gain insight into the strategy that animals use to select actions to achieve
reward. We find that trial-to-trial action switching is a stochastic component of the behavior and
sets  theoretical  limits  on  the  performance  of  behavioral  models  in  predicting  action  choice.
Although the optimal agent in this task would perform inference in a hidden Markov model (HMM),
mouse behavior is not consistent with that of such an agent. Instead, it is better described by a
simple logistic regression using a stochastic action selection policy. Leveraging the simple form of
the logistic regression weights, we reformulate this model as one that recursively updates a single
state estimate.  This recursively formulated logistic  regression (RFLR) model  not  only captures
mouse choice and switching behavior but generalizes to new environmental parameters through a
parsimonious solution that minimally reduces expected rewards. We further show that this model
closely  resembles  a  Q-learning  algorithm  from  reinforcement  learning,  and  under  further
assumptions they can be shown to be equivalent. Finally, we relate these models to a sticky agent
performing  HMM  inference.  Altogether,  our  results  connect  descriptive,  algorithmic,  and
theoretically motivated model formulations to offer multiple views on animal behavior and make
predictions about its underlying neural mechanisms.

Results

Task Structure and Performance. To study probabilistic decision making, we trained mice in a
Markovian two-armed bandit task. During each behavior session, the mouse moved freely in a
chamber containing three ports into which it could place its snout (i.e., nose poke) to engage with
the task (Fig. 1A). One of the side ports delivered reward with probability p ∈ [0.5, 1] (the high
port) and the other with probability 1 − p (the low port). We trained each mouse with three sets of
task conditions, in which the high–low reward probabilities (in percent) were assigned as 90–10,
80–20, or 70–30 for a given session but changed day to day. The state of the reward probabilities
was assigned on a trial-by-trial basis following a Markovian process, such that after completion of
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each trial,  high and low ports remained the same with probability q  =  0.98 and switched with
probability 1 − q = 0.02.  This stochastic process produced blocks of  consecutive trials during
which the high reward probability was assigned to the right or left port (Fig. 1B), with a mean block
length of 50 trials.

Wild-type mice learned to perform this task in all three sets of reward conditions. We focus on
the  intermediate  condition,  80–20,  in  the  main  text  and  figures  unless  otherwise  stated,  but
corresponding information for the alternative contexts is reported in SI Appendix.  In the 80–20
sessions, mice achieved an average of 514 ±77 water rewards in a 40-min session (±SD, n = 6; SI

Fig. 1. Mouse behavior in a two-armed bandit task. (A) Task structure: A mouse initiates a trial by putting its
snout (i.e., poking) into the center port. It then selects one of the two side ports in order to enter the choice
state. In this illustration, the mouse chose the right port. Depending on the choice and preassigned port
reward probabilities, reward is or is not delivered. The mouse terminates the trial by withdrawing from the
side port, which initiates the ITI state. During this 1-s period, the computer assigns reward probabilities for
the subsequent trial using a Markov process. (B) Example mouse behavior across part of a session. Blue
and white shading indicates the location of the high–reward probability port as left and right, respectively.
Dot position and size indicate the port chosen by the mouse and the outcome of the trial, respectively (large
dot indicates rewarded). (C) P

highchoice

 for p = 0.8  as a function of trial number surrounding the trial at
which  the  reward  probabilities  reverse  (block  position  =  0).  Each  thin  line  shows  the  behavior  of  an
individual  mouse (n  =  6),  whereas the thicker  line  and the shading around it  show the mean and SE,
respectively, across mice. (D) As in C but for P

switch

.
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Appendix, Table S1). Overall, right and left port selection was unbiased (51% left, 49% right), and
mice performed each trial quickly (center port to center port elapsed time or trial durations of mean
± SD = 2.05 ±3.14 s and median ± MAD = 1.65 ±0.79 s). The mean time between center and
choice  port  was  0.47  s,  much faster  than  the  2-s  upper  limit  imposed by  the  task  structure.
Although timing of actions was history dependent (SI Appendix, Fig. S1), this information was not
used in the analyses and models presented below.

To quantify task performance and characterize the behavioral strategy, we determined the per
trial probabilities of 1) selecting the higher rewarding port (P

highchoice

), reflecting the ability of the
mouse to collect information across trials to form a model of the optimal action, and 2) switching
port selection from one trial to the next (P

switch

). Switch trials occurred infrequently: in the 80–20
sessions they made up only 0.07 of all trials. Mice made decisions in a clearly nonrandom pattern:
across mice, P

highchoice

 was 0.83 (range was 0.81 to 0.84; SI Appendix, Table S2). Furthermore,
the strategy employed by the mice deviated from a simple “win–repeat, lose–switch” strategy as
P

switch

 was 0.02 following rewarded choices and 0.18 following unrewarded choices (as opposed
to the 0.0 and 1.0 rates predicted by win–repeat, lose–switch; SI Appendix, Table S1).

Mice were sensitive to the nonstationary reward probabilities: they generally chose the higher-
rewarding port  but adjusted their  behavior in response to reward probability reversals at block
transitions  (Fig.  1C).  The  mice  required  multiple  trials  to  stably  select  the  new  high–reward
probability port after a block transition (τ = 4.28 ± 0.19 SEM trials) (Fig. 1C and SI Appendix,
Table S2). Furthermore, although across all trials, P

switch

 was low, it  increased after the block
transition (Fig. 1D), paralleling the recovery of P

highchoice

. The dynamics of P
highchoice

 and P
switch

following the block transitions indicate that mice, as expected, modulate their behavior in response
to the outcomes of choices, which motivates our pursuit of models that capture this behavioral
strategy (6,  7,  10,  11).  Mice adapted their  behavior  across reward contexts,  responding more
quickly to block transitions in sessions with the more deterministic reward probabilities (90–10)
than in those with the more stochastic reward probabilities (70–30) (SI Appendix,  Fig.  S2 and
Table S2).

History Dependence of Behavior. To examine the contribution of trial history to mouse choice,
we  computed  the  conditional  probability  that  the  mouse  switched  ports  given  each  unique
combination of choice–reward sequences in the preceding trials [P(switch | sequence)], akin to n-
gram  models  used  in  natural  language  processing  (26,  27).  This  can  be  thought  of  as  a
nonparametric policy in which the combination of previous choices and rewards (implicitly across
varying latent states) guides future choice (Fig. 2A). We used a code to represent the conditioned
history sequences, which fully specifies port choice and action outcome over a chosen history
length (three in the given example) leading up to each trial (Fig. 2B and Materials and Methods).
For a history length of three trials, switching behavior has left–right symmetry. For example, the
probability of a left choice following three rewarded left choices is approximately the same as the
probability of a right choice following three rewarded right choices. This allowed us to represent
choice direction in relative terms (Fig. 2C).
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Apparent  Stochasticity  of  Behavior  Limits  the  Accuracy  of  Predictive  Models. To
characterize the history dependence of the mouse switching behavior, we examined conditional
switch probabilities for all unique action and outcome sequences for history length 3 (Fig. 2D and

Fig. 2. Switching behavior is probabilistic and history dependent. (A) Schematic of world model (black lines)
for the two-armed bandit task: rewards (r) depend on mouse choice (c) and the underlying state (z) for each
trial (t). World state evolves according to a Markov process. A nonparametric policy (blue) shows previous
choices and rewards contributing to future choice. (B) The action–outcome combination for each trial is
fully specified by one of four symbols: L or R for left or right rewarded trial and l or r for left or right
unrewarded trial, respectively. These can form words that represent action–outcome combinations across
sequences of trials. Each sequence starting with right port selection has a mirror sequence starting with a
left  port selection (e.g.,  r–L and l–R, in A)  and can be combined by defining the initial  direction in the
sequence as A/a and those in the other direction as B/b. The probability of switching ports on the next trial
is  calculated,  conditioned  on  each  trial  sequence  for  history  length  n.  (C)  The  conditional  switch
probabilities after R/L mirror pairs of history length 3 are plotted for histories starting on the left vs. right
port. The clustering of points around the unity line confirms the symmetry of mouse switching (correlation
coefficient = 0.91). One such pair (l–r–R and r–l–L) is highlighted, which becomes a single sequence (a–b–
B). (D) (Top) Conditional switch probability across all mice in the 80–20 condition for each action–outcome
trial sequence of history length 3, sorted by switch probability. Each bar height indicates the mean switch
probability following the corresponding action–outcome history across all trials and mice. The error bars
show binomial SEs. Sequences that occur with SEM > 20% are shown in lighter gray. (Bottom) As in Top for
data collected across all sessions for a single representative mouse. Sequences are presented along the x
axis using the same order as in Top. (E) Confusion matrices for the nonparametric policy for right and left
port choice (Left) and repeat and switch (Right) in the 80–20 condition. On-diagonal values represent the
theoretical maximum for sensitivity, or the proportion of predicted positives relative to all positives, under
the mouse’s conditional probability distribution. Off-diagonal values represent expected proportion of false
negatives, normalized to one across the row with true positives.
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SI Appendix, Fig. S2). This showed that the probability of switching varies as a function of trial
history, supported by cross-validated likelihood estimates on data held out from the ∼115,000 trials
collected  from  the  80–20  sessions  (Materials  and  Methods  and  SI  Appendix,  Fig.  S3),  and
confirms  that  mouse  behavior  depends  on  action  and  outcome history.  Broad  trends  can  be
identified, such as the tendency to repeat the previous action after rewarded trials. In addition,
although mice exhibit a regime of behavior in which they nearly deterministically repeat the same
port  choice  on  subsequent  trials  (P

switch

≈ 0),  the  maximum  conditional  P

switch

 does  not
approach 1 for any action-outcome sequence, instead reaching a maximum of ∼0.5 (P(switch |
“Abb”)  =  0.47 ± 0.078  SEM).  Thus,  switches  cannot  be  predicted  with  certainty  for  any
combination of three past actions and outcomes. This apparent stochasticity persists for longer
history sequences that are expressed sufficiently often to reliably calculate P(switch | sequence)
(SI Appendix, Figs. S2 and S3). Thus, mouse behavior can, in this framework, be qualitatively
described as moving from an exploit state of repeating recently rewarded actions to an explore
state of random port choice after recent failures to receive reward.

For a history of length 3, this nonparametric model of mouse behavior is defined by 43

/2 = 32

conditional  probabilities.  A  more  concise  summary  is  given  by  the  confusion  matrices  for  its
average predicted  choice  probabilities  (Fig.  2E).  We  considered  two  representations  of  these
choices: the chosen port (left/right) and whether the mouse switched port from the last trial (repeat/
switch).  These confusion matrices show that  left  and right  port  choices are highly  predictable
actions, each with an average probability of 0.90. In contrast,  although the repetition of action
selection from one trial to the next is highly predictable given choice and outcome history, with an
average probability  of  0.94,  the apparently  stochastic  nature  of  switching events  makes them
highly  unpredictable,  such that  the probability  of  predicting that  the mouse will  switch its  port
choice from one trial  to the next  is  only 0.23.  Nevertheless,  this  prediction is  better  than that
expected by chance given the 0.07 basal switch rate, providing a target against which we can
evaluate model performance.

Models of Mouse Behavior. Our goal in the preceding analysis of mouse behavior was to identify
quantifiable features that could be used to constrain and test computational models of behavior.
Based on this analysis we selected four criteria to evaluate models of mouse behavior:

1. The first criterion is the average log likelihood (LL) of a held-out fraction (30%) of data; i.e., the
average log probability the model assigns to a mouse’s choice given its preceding choices and
the rewards conferred.  As a baseline,  we use the LL under  the nonparametric  model  with
history length 3 (LL = –0.180; SI Appendix, Table S3).

2. We also selected the ability of  the model to accurately predict  port  selection and switching
events on a trial-by-trial basis, as compared to the expected confusion matrices defined above
(Fig. 2E).

3. As the third criterion, we chose the ability of the model to capture the conditional action and
outcome history dependence of P

switch

, including the apparent history-dependent stochasticity
of behavior (Fig. 2D).

4. Finally,  we  selected  the  ability  of  the  model  to  reproduce the  dynamics  of  P
highchoice

 and
P

switch

 around block transitions (Fig. 1 C and D).
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These features of behavior were stable within and across sessions (SI Appendix, Figs. S4 and
S5).

In  developing  models,  we  separately  consider  two  components  underlying  the  observed
behavior: the algorithm and the policy. The algorithm is the process used to generate beliefs about
the state of the environment (i.e., level of confidence that the higher-reward port is left vs. right).
The policy  relates those computed beliefs  to  a  decision to  select  a  port.  The behavioral  task
evolved according to a discrete Markovian process such that, from the agent’s perspective, the
world can be described as governed by an HMM. Therefore, the theoretically motivated, ideal
observer model would use a Bayesian inference algorithm for HMMs to infer which port is most
likely to yield reward. We compared this theoretically motivated model to logistic regression (a
descriptive model that is frequently used to predict behavior in this context) and to Q-learning (a
commonly used reinforcement learning algorithm). For the policy, we hypothesized that stochastic
action policies would better reproduce the observed behavioral patterns over their deterministic
counterparts, given the apparent stochasticity of mouse conditional switch probabilities.

Bayesian Agents Fail to Capture Mouse Behavior. In our task, there are two environmental
states corresponding to whether the left or right port is the higher–reward probability port. These
states are not directly observable by the mouse. Instead, they are relayed to the mouse through
the outcomes of its choices. A Bayesian agent computes a posterior distribution (also called the
“belief  state”)  over  the  environmental  state  given  past  choices  and  rewards  by  performing
inference with a model of the world, here an HMM. Due to the Markovian nature of the task, the
belief state computation can be performed recursively (Fig. 3A and Materials and Methods). The
agent then incorporates the belief state into a policy, which specifies a distribution over choices on
the next trial.
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Let zt denote the environmental state on trial t (left, zt = 1; right, zt = 0). Let ct  denote the
mouse’s choice (left, ct = 1; right, ct = 0), and let rt be a binary variable indicating whether or not
the mouse received a reward. Since the environmental state is binary, we can represent the belief
state with a single value, b

t+1

= P(z

t+1

= 1 | c

1:t

, r

1:t

). For Bayesian agents, the distribution of
the  next  choice  is  determined  by  the  policy,  which  is  a  function  of  the  belief  state,
P(c

t+1

= 1 | c

1:t

, r

1:t

) = π(b

t+1

).
We considered multiple policies to convert the belief state into a distribution over choices on the

next  trial.  In  this  task,  the  optimal  agent  would  use  a  greedy  policy  in  which  π(b

t+1

) = 1  if
b

t+1

≥ 0.5  and π(b

t+1

) = 0  otherwise. Alternatively,  the Thompson sampling policy (28) sets
π(b

t+1

) = b

t+1

 so that ports are chosen at a rate proportional to the model’s belief. Last, the
softmax policy interpolates between these two policies by means of a temperature parameter, T
(29) (Materials and Methods). As T goes to zero, the softmax policy recovers the greedy policy,
and when T = 1 it is equivalent to Thompson sampling.

To test  if  a  Bayesian agent could accurately model  the mouse’s behavior,  we performed a
dense grid search over the HMM parameters and selected the parameters that maximized the log
probability of the mouse’s choices. We did this for a range of softmax policy temperatures. For the
Thompson sampling policy (T = 1), the best-fit HMM parameters accurately capture the temporal
structure of the environment (maximized at a transition probability of 0.02) but underestimate the
high  port  reward  probability  (maximized  at  a  reward  probability  of  0.65,  whereas  the  true
probability was 0.8). In terms of predicting the mouse’s behavior, this model was much worse than
the baseline (LL = –0.325; SI Appendix, Table S3).

We also examined behavior  predicted by the Bayesian agent with the Thompson sampling
policy and found that it failed to capture essential features of the mouse behavior, as measured by
criteria 2 to 4 above. This agent systematically overestimated the probability of switching (Fig. 3 B–
E). This is reflected by the deviation of the model from the expected confusion matrices of the
nonparametric policy, which we compute as the absolute values of the differences between the
model’s  values  and  expected  values  for  each  action  (Fig.  3B;  Δs,  compared  to  the  data  in
Fig. 2E). Accordingly, the model overestimates the conditional switch probabilities (Fig. 3 C and D).
(Note that here we present the analyses of the held-out data not used for training, which are only
30% of the data presented in Fig. 2D. We preserve the sorting order from the full dataset, but for

Fig. 3. HMM overestimates mouse switching probability. (A) The HMM recursively updates belief state (bt) by
incorporating evidence from choice (c

t−1

) and reward (r
t−1

) of the recent trial. The next choice (ct) depends
on the model posterior and the policy (blue).  (B)  Absolute values of  the differences between the HMM
confusion matrices and nonparametric  confusion matrix  (Fig.  2E)  for  each action type.  (C)  Conditional
switch probabilities generated from the HMM plotted against those observed from mice (sum of squared
error [SSE] = 4.102). (D) Conditional switch probabilities as predicted by the HMM (blue; model) overlaid on
the observed mouse behavior (gray) for all history sequences of length 3. Sequences on the x  axis are
sorted according to mouse conditional switch probabilities of the full dataset (Fig. 2D).  The bar heights
show the mean switch probability across mice for each corresponding sequence history, and the error bars
show the binomial SE for the mouse test data. (E) HMM-generated P

highchoice

 (blue; Left) and P
switch

 (Right)
as a function of trial number surrounding state transition (block position 0) as compared to the mouse
behavior (gray). Dark lines show the mean across trials at the same block position, and the shading shows
the SE.
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this reason the conditional switch probabilities and binomial SE estimates differ across figures.)
Finally,  the  HMM fails  to  capture  the  dynamics  of  P

switch

 around  block  transitions  of  reward
probabilities  (Fig.   3E).  On  the  other  hand,  P

highchoice

 is  captured  quite  well  by  the  HMM,
demonstrating the ability of a model to predict port selection from action–outcome history despite
using very different trial-by-trial switching dynamics from the animal.

We performed the same procedure at different softmax policy temperatures, but by each of the
behavioral metrics outlined above, these models also failed to capture the mouse behavior (SI
Appendix, Fig. S6 and Table S3). This included an HMM using parameters that correspond to the
ideal observer, which uses a greedy policy wherein the agent deterministically selects the port that
has  a  higher  probability  according  to  the  model’s  belief.  These  results  show that  the  mouse
behavior  is  not  captured  by  the  optimal  agent,  nor  by  a  model  following  the  same inference
process but with imperfect learning of environmental parameters.

Logistic  Regression  with  a  Stochastic  Policy  Better  Predicts  Mouse  Behavior. Logistic
regression has been used previously to predict rodents’ choices in similar tasks (6, 7, 11, 13), but
its ability to predict trial-by-trial switches has not been evaluated. We built a logistic regression
model for the conditional probability of the mouse’s next choice given its past choices and rewards,
P(c

t+1

= 1 | c

1:t

, r

1:t

) = σ(ψ

t+1

), where σ(x) = (1 + e

−x

)

−1 is the logistic function and ψ
t+1

are the log-odds. We modeled the log-odds as

ψ

(LR)

t+1

=

L

1

∑

i=0

α

i

c̄

t−i

+

L

2

∑

i=0

β

i

c̄

t−i

r

t−i

+

L

3

∑

i=0

γ

i

r

t−i

+ δ,

[1]

where α, β, and γ represent the weights on input features for choice (c̄
t

), encoding of choice–
reward interaction (c̄

t

r

t

), and reward (rt) across trials back to L1, L2, and L3, respectively.  The
choice is encoded as c̄

t

= 2c

t

− 1, which equals +1 for a left port choice and –1 for a right port
choice. We fit the model by maximum likelihood estimation and used cross validation to select the
number of past trials to include for each feature. This confirmed that there is minimal left–right port
choice bias (i.e., δ = 0.04). We also found that rewards alone did not contribute significantly to
choice prediction (i.e., L

3

= 0) but that the history of choice–reward encoded trials benefited the
model (i.e., L

2

= 5; Fig. 4B). Furthermore, only information about the most recent port choice was
necessary  (i.e.,  L

1

= 1).  This  enabled  us  to  use  a  reduced  form  of  the  model  log-odds
computation:

ψ

(LR)

t+1

= α

i

c̄

t

+

5
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i=0

β

i

c̄

t−i
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.

[2]
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The feature weights indicate a propensity of mice to repeat their previous action, as denoted by
the positive coefficient on previous choice (hereby denoted by α; Fig. 4B).

We tested the fit model on the held-out data to predict the left or right choice of the mice and
found that  this model,  coupled with a stochastic action policy,  recapitulated all  features of  the
behavior  and  achieved  comparable  log-likelihood  estimates  on  held-out  data  to  those  of  the
nonparametric model (Fig. 4 C–F, blue traces; LL = –0.182; SI Appendix, Table S3). The stochastic

Fig.  4. Stochastic logistic regression policy captures mouse behavior comprehensively, whereas greedy
logistic regression fails to predict switches. (A) The logistic regression computes the probability of choice
(bt) from choice (c

t−i

) and reward (r
t−i

) information across a series of trials. Here we represent the model
estimate as bt for consistency across graphical representations, but note that it in this case it corresponds
to the log-odds of choice, ψ (Eqs. 1 and 2). (B) (Left) Feature weights for a logistic regression predicting the
log-odds of mouse port selection for the choices, rewards, and choice–reward interactions in the previous
10 trials. (Right) Feature weights after cross-validation for hyperparameters and refitting the model. α is the
weight on the previous choice, and β is the set of weights on choice–reward information for the previous
five trials. (C) Absolute value of the differences between the logistic regression confusion matrices and
nonparametric  confusion  matrix  (Fig.  2E)  for  each  action.  Δ  scores  are  shown  for  stochastic  logistic
regression as well as for greedy logistic regression. (D) Conditional switch probabilities generated by the
logistic regression model using a stochastic (blue) or greedy (red) policy plotted against those observed in
mice  (stochastic  SSE  =  0.378,  greedy  SSE =  1.548).  (E)  (Top)  Conditional  switch  probabilities  for  the
stochastic logistic regression (blue) across sequences of history length 3 overlaid on those from the mouse
data (gray). Sequences on the x axis are sorted according to mouse conditional switch probabilities of the
full dataset (Fig. 2D). Error bars show binomial SEs for the mouse. (Bottom) As in Top but for a greedy
policy (red). (F) P

highchoice

 (Left) and P
switch

 (Right) as a function of trial number surrounding state transition
(block position 0).  Logistic  regression predictions with  a  stochastic  (blue)  and greedy (red)  policy  are
overlaid on probabilities observed for mice (gray). Dark lines show the mean across trials at the same block
position, and the shading shows the SE.
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policy used here, and in all models below, is a special case where the model selects its port at a
rate proportional to the model estimate (Materials and Methods). The stochastic logistic regression
captured both the port choice and switching behavior of the mouse as well as possible given the
expected confusion matrices (i.e., Δ ≈ 0; Fig. 4C). The model captures the history dependence of
the mouse’s switching behavior, including the apparent stochasticity of conditional switching (Fig. 4
D and E). Finally, the model recapitulates the time course over which the block transition perturbs
stable port selection and uses increased switch prediction as a mechanism to recover the selection
of the high port (Fig. 4F).

These results differ from those of the theoretically motivated model (i.e., HMM) as well as from
the same logistic regression model using a deterministic policy (a greedy policy that selects the
port  with  higher  log-odds;  Fig.   4,  red  traces).  Interestingly,  the  impact  of  policy  on  model
performance is most evident when evaluating model fit on switching behavior, with surprisingly
subtle effects on the model’s accuracy in predicting left vs. right choice (Fig. 4F).  Although the
greedy logistic regression captures much of the dynamics of P

highchoice

 (Fig. 4 F, Left), it does so
without predicting switching between ports (Fig. 4 F, Right). These results emphasize the need to
explicitly examine switch trials in behavioral modeling.

Recursive Formulation of the Reduced Logistic Regression. Our goal in modeling behavior
was  to  uncover  the  task  features  and  algorithms that  lead  to  the  expressed  decision-making
strategy. The reduced logistic regression accurately captures the mouse behavior but requires the
weights on each of its features to be learned and the sequence of past choices and rewards to be
stored in memory. Furthermore, it requires adapting feature weights when task conditions change
such that the animal would essentially need to store multiple look-up tables of feature weights and
recall  the  correct  table  to  perform  the  task.  As  such  a  look-up  table-based  strategy  seems
implausible  as  the  foundation  of  mouse  behavior,  we  inspected  the  structure  of  the  logistic
regression model  to  determine whether  we could  achieve similar  predictive  accuracies  with  a
recursively updated algorithm.

The weights assigned to past choices and rewards were well fit by an exponential curve (30),
with initial magnitude β that decays across trials at a rate of τ (Fig. 5B). Using this exponential
approximation and approximating the finite sum with an infinite one (since τ < L

2

), we can rewrite
the log-odds of port selection on the next trial (ψ

t+1

) as

ψ

(LR)

t+1

≈ αc̄

t

+ β

∞

∑

i=0

e

−i/τ

c̄

t−i

r

t−i

.

[3]
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Furthermore, we can compute the infinite sum recursively by observing that

ϕ

t

= β

∞

∑

i=0

e

−i/τ

c̄

t−i

r

t−i

,

[4]

= βc̄

t

r

t

+ e

−1/τ

ϕ

t−1

.

[5]

We recognize the resulting form as mathematically analogous to a drift diffusion model (21–23)
that decays toward zero with time constant τ but receives additive inputs depending on the most
recent choice and whether or not it  yielded a reward. The magnitude β  determines the weight

Fig.   5.  A  recursive  formulation  of  the  logistic  regression  recapitulates  behavior  in  multiple  reward
probability conditions. (A) An RFLR updates a single state belief (bt) using evidence from recent choice (
c

t−1

) and reward (r
t−1

). The policy (blue) shows an additional contribution on next choice prediction from
the previous choice. (B) β weights for choice–reward information are described by an exponential function
(black curve). (C) Summary of the fit RFLR parameters for data from mice performing in the three sets of
reward  probability  conditions.  Each  data  point  shows  the  mean  parameter  estimate  with  error  bars
indicating the bootstrapped 95% confidence intervals. (D) Δ scores for absolute values of the differences
between the RFLR confusion matrices and nonparametric confusion matrix (Fig. 2E) for each action across
the  three  reward  probability  conditions.  (E)  Conditional  switch  probabilities  calculated  from  the  RFLR
predictions  plotted  against  those  of  the  observed  mouse  behavior  for  each  set  of  reward  probability
conditions  (Top,  90–10  [SSE  =  0.243];  Middle,  80–20  [SSE  =  0.417];  Bottom,  70–30  [SSE  =  0.33]).  (F)
Conditional  switch  probabilities  predicted  by  the  RFLR  (model)  across  sequences  of  history  length  3
overlaid on those from the mouse data (gray) for the three sets of reward probability conditions. Error bars
show binomial SE for the mouse. (G)  P

highchoice

 (Left)  and P
switch

 (Right)  as a function of  trial  number
surrounding state transition (block position 0) for the three sets of probability conditions. Dashed lines
show mean of model predictions, and solid lines show mean of true mouse probabilities across trials at the
same block position. Shading shows the SE.
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given to incoming evidence. Therefore, our computation of the log-odds can be given as a filtering
of choices and rewards biased by α toward the most recent choice (Fig. 5A):

ψ

(RFLR)

t+1

= αc̄

t

+ ϕ

t

.

[6]

This  form  of  the  model  offers  two  advantages  over  the  original  logistic  regression  when
considering a potential neural implementation of the algorithm: 1) the exponential representation of
choice and reward history captures the behavior using a model with only three parameters (α, β, τ

), whereas the logistic regression used six, and 2) the recursive definition of this choice–reward
representation reduces the memory demands since the model only needs to store the current state
estimate (ϕ

t

), choice (c̄
t

), and reward (rt).
We tested this RFLR on all three sets of reward conditions (i.e., 90–10, 80–20, and 70–30) and

found it predicted all features of mouse behavior excellently (Fig. 5 D–G and SI Appendix, Table
S3). Interestingly, the α parameter varied the most across reward probability conditions, whereas β
and τ remained relatively constant (Fig. 5C), suggesting that the mechanism by which mice adapt
their  behavior  can be explained by  increasing  or  decreasing  their  bias  toward  repeating  their
previous choice. Notably, α > 0  in all  contexts, such that there was always some tendency to
repeat the previous choice (stickiness).

Relation to Reinforcement Learning Algorithms. Algorithms that use trial-to-trial behavior and
outcomes incrementally to build an estimate, rather than requiring recalling the full action history
for each new choice, are appealing for decision-making theory. The RFLR resembles another class
of such algorithms, namely, Q-learning algorithms used in reinforcement learning (19). Q-learning
algorithms use a model-free approach to compute quality estimates for each choice available to
the  agent  and  recursively  update  these  estimates  depending  on  whether  or  not  a  reward  is
received  (19).  Let  Q

t,1

 and  Q
t,0

 denote  the  quality  estimates  for  the  left  and  right  choices,
respectively. The recursive updates are

Q

t+1,i

= {

[7]

Thus,  the quality  estimates decay toward zero at  a  rate  determined by the forgetting time
constant τ

Q

,  and the chosen port’s  quality  is  updated based on the discrepancy between the
received  and  expected  reward  and  a  learning  rate  β

Q

.  The  policy  is  given  by
P(c

t+1

= 1   c

1:t

, r

1:t

) = σ(ψ

(Q)

t+1

), where the log-odds are modeled as

ψ

(Q)

t+1

= α

Q

c̄

t

+ ΔQ

t+1

/T .

[8]

Here α
Q

 is a weight on the previous choice, ΔQ

t+1

= Q

t+1,1

− Q

t+1,0

 is the difference in

e

−1/τ

Q

Q

t,i

+ β

Q

(r

t

− Q

t,i

) if c

t

= i

e

−1/τ

Q

Q

t,i

otherwise.

∣
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quality estimates, and T is a temperature parameter.
Compare these log-odds to those of  the RFLR model (Eq. 6),  and note that  ΔQ

t+1

/T  is
analogous to the recursive quantity ϕ

t

. It too can be computed recursively:

ΔQ

t+1

= e

−1/τ

Q

ΔQ

t

+ β

Q

c̄

t

r

t

− β

Q

c̄

t

Q

t,c

t

.

[9]

These updates are nearly the same as those for ϕ
t

 (Eq. 5). The only difference is the final term,
which depends on the current quality estimate of the chosen port.

In the closely related forgetting Q-learning (F-Q) model (24), the final term in Eq. 9 disappears.
The key difference in the F-Q model is that the updates for the chosen port are replaced with a
convex  combination  of  the  current  estimate  and  the  observed  reward,
Q

t+1,i

= e

−1/τ

Q

Q

t,i

+ (1 − e

−1/τ

Q

)r

t

,  when ct  =  i.  Under  this  formulation,  the  dynamics  for
ΔQ

t+1

 simplify so that an exact correspondence can be made between the parameters of the
RFLR model and those of the F-Q model (31) (Materials and Methods).

As expected,  implementing the F-Q model  with learning/forgetting,  choice history bias,  and
temperature  values  derived  from  the  RFLR  model  yielded  equivalent  trial-by-trial  choice
probabilities and results (LL = –0.182; SI Appendix, Table S3). The more flexible Q-learning model
did not yield higher performance and in fact appears to overfit (LL = –0.185). The result of this
analysis  provides  an  algorithmic  formulation  based  on  reinforcement  learning  theory  that
comprehensively captures mouse choice and switching behavior.

Returning to the Bayesian Agent. The full LR, RFLR, and Q-learning models are similar in both
their  form and their  ability to predict  mouse behavior,  contrasting the poor performance of the
theoretically optimal Bayesian agent. The Bayesian agent uses knowledge of the task structure
(i.e., an HMM) to infer the environmental state and guide future action, but it does not capture the
tendency of the mice to repeat their last action (i.e.,  compare graphical representations of the
HMM and RFLR in Figs. 3A and 5A).

To  gain  insight  into  the  differences  between  these  models,  we  developed  a  mathematical
correspondence  for  the  log-odds  computation  by  the  RFLR  with  that  of  the  Bayesian  agent
performing inference in  an HMM (Materials  and Methods).  Let  ψ(B)

t+1

= log

b

t+1

1−b

t+1

 denote  the
belief state of the Bayesian agent, converted into log-odds. We showed that the recursive belief
state calculations for the HMM can be written as

ψ

(B)

t+1

≈ e

−1/τ

B

ψ

(B)

t

+ α

B

c̄

t

+ β

B

c̄

t

r

t

,

[10]

where  (α

B

, β

B

, τ

B

)  are  determined  by  the  reward  and  transition  probabilities  of  the  HMM
(Materials and Methods). These updates are similar to those of the RFLR, allowing us to establish
a relationship between the RFLR parameters and the reward and transition probabilities of the
HMM.

This analysis revealed two key differences between the RFLR model and the Bayesian agent.
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First, they differ in how they weigh the preceding choice, c̄
t

. Whereas for all conditions the best-
fitting RFLR model yields α > 0 (Fig. 5C), the optimal HMM requires α

B

< 0 (see derivation in
Materials and Methods). Intuitively, the RFLR model tends to repeat its previous action, in contrast
to the HMM, which makes its selection considering only its posterior belief and independent of any
additional choice history bias. Second, the RFLR recursions operate on the weighted sum of past
choices and rewards, ϕ

t

, whereas the HMM recursions operate directly on the log odds, ψ(B)

t+1

. To
address this difference, the Bayesian agent needs an additional  tendency to repeat its  choice
immediately after switching ports. We show that the RFLR and the Bayesian agent can be made
equivalent by adding a stickiness bias,

κ

t+1

= (α − α

B

) c̄

t

− αe

−1/τ

B

c̄

t−1

,

[11]

to the Bayesian agent.  Then its  policy is  given by P(c

t+1

= 1   c

1:t

, r

1:t

) = σ(ψ

(B)

t+1

+ κ

t+1

)

(Materials and Methods), and by construction, it matches the performance of the descriptive and
algorithmic models (SI Appendix, Table S3).

Comparison of Behavior of Models Performing the Two-Armed Bandit Task. Analysis of the
trial-by-trial log-odds estimates for the RFLR (and accordingly for the sticky HMM, F-Q, and full LR
model)  reveal  asymmetrical  use  of  rewarded  vs.  unrewarded  choice  information,  whereby
rewarded choices provide evidence toward the selected port but unrewarded choices result in a
decay toward α (and therefore maintain a preference for the most recent choice; Fig. 6A).  This
contrasts the mechanics of the optimal agent, for which unrewarded trials provide evidence toward
the alternative port (Fig. 6A). For an optimal agent, an unrewarded choice (or series of unrewarded
choices) at the current selection port can flip the sign of belief or log-odds ratio, providing evidence
in favor of switching ports (P

switch

> 0.5 and even nearing deterministic P
switch

), in conflict with
the actual mouse behavior.

∣Fig.  6.  Simulations  with  a  generative  RFLR  recapitulate  mouse  behavior.  (A)  Representative  session
depicting equivalent trial-by-trial log-odds computations for the RFLR vs. the sticky HMM (orange vs. black
traces). These model estimates contrast the log-odds of the posterior computed by the ideal HMM (light
blue), which specifically diverges in prediction updating following unrewarded trials. Stem plot shows the
choice–reward interaction that provides action–outcome evidence to the RFLR. Horizontal  dashed lines
indicate ±α,  and vertical  dashed lines indicate state transitions. Zoomed-in image shows an expanded
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In contrast, for the empirically better-fitting models (LR, RFLR, F-Q, and sticky HMM), the effect
of unrewarded trials on the log-odds estimate is to drift toward its choice history bias (i.e., α) and,
therefore, like the mouse, cause increasingly random port selection. Shifting the port favored by
the  empirical  models  requires  achieving  a  reward  on  the  alternative  port  from  the  current
preference,  which causes an update  and sign flip  in  the belief  parameter.  This  suggests  that
switches under the empirical models rely on the combination of the odds ratio approaching 1 (i.e.,
log-odds = 0) and a stochastic action policy to facilitate random sampling of the low-probability
port.  It  is  these  stochastic  switches—rather  than  evidence-based  switching—that  allow  the
empirical models to update their belief to favor a new action in the future.

The empirical versus ideal models exhibit different bounds on the maximum and minimum trial-
to-trial switching probability (Materials and Methods and Fig. 6A). The upper and lower bounds of
switching probability in the ideal Bayesian agent are constrained by the odds ratio of the transition
probability—even  when  the  model  confidently  infers  the  current  state  of  the  port  reward
probabilities, the log-odds are bounded by the probability that the system remains in this state on
the  next  trial.  In  contrast,  the  RFLR  and  sticky  HMM  reach  near-deterministic  steady-state
behavior (Fig.  6A  and Materials and Methods).  These bounds explain the elevated switch rate
produced by Thompson sampling on the HMM belief state, even outside of the block transition
(Fig. 6B). Following reward, the belief log-odds of the HMM are further constrained to the product
of the odds ratios of the emission probability and transition probability.

Optimality of Behavior. The deviation of  the empirical  behavior from the theoretically optimal
model appears striking when examining trial-by-trial action selection. However, it is unclear that
these deviations have a significant cost in terms of the total rewards received. Surprisingly, the
expected reward rate  of  the  original  Thompson sampling HMM predicting  choice from mouse
behavior was only marginally better than that actually achieved by the mice (71% vs. 70% trials
rewarded in 80–20 sessions, respectively).

To determine whether this was an effect of the suboptimality of the mouse history crippling the
HMM performance, we simulated data under the ideal HMM unbounded from mouse history. We
initialized an ideal  observer model  with the true task parameters (p  = 0.8 and q  =  0.98)  and
allowed it to play the game using its own past choices and rewards as history. This model did not
perform better, achieving 71% ± 0.4% rewards per session (mean ± SEM). While this version of
the HMM uses the optimal inference process for the task, an ideal agent in this task should act
greedily  on  the  inferred  belief.  Indeed,  a  greedy  HMM using  the  same  parameters  achieves
marginally greater reward rates (Fig. 6B, 74% ± 0.0%), highlighting the significance of the action
policy on switching behavior. We compared the performance of these models to simulations run
under  a  generative  form  of  the  RFLR  using  the  empirically  fit  parameters,  which  achieved
69% ± 0.0% rewards per session (mean ± SEM). Notably, even without the mouse history as
input features to guide action selection, the RFLR-generated behavior resembles the characteristic

segment of the session with unrewarded trials labeled by red dots. (B) P
highchoice

 (Left) and P
switch

 (Right)
as a function of trial number surrounding a state transition (block position 0) in the 80–20 condition for the
generative RFLR (orange), generative ideal HMM (light blue, dashed), and Thompson sampling HMM (TS,
solid) overlaid with the observed mouse probabilities (gray). The lines show the means across trials at the
same block position, and the shadings show the SEs.
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patterns of mouse behavior (Fig. 6B).
We hypothesized that the mice converged to a local maximum or plateau of expected reward

within  the parameter  space in  which further  optimization of  behavior  driven by reward rate  is
challenging. For each of the three reward conditions we held τ  constant  at  the corresponding
empirically fit value and examined expected reward across the two-dimensional parameter space
for varying α and β. In each, there is a wide plateau over which expected reward stabilizes, and
both the α and β values for the true task parameters under the original HMM and the fit values
under the RFLR lie near this plateau (Fig. 7A). For this reason, near-maximal performance can be
achieved with a broad range of α and β values (Fig. 7B).

We also considered that the mice may optimize reward relative to a cognitive or physical cost,
as opposed to optimizing reward rate at any cost. Specifically, we hypothesized that the stickiness
of the empirical models might indicate a preference for the mice not just for reward maximization
but also for efficient collection of reward in terms of behavioral effort, in this case as reflected in the
switching rate. Comparing the ratio of rewards to switches, we found that the RFLR achieves twice
as many rewards per switch as the Thompson sampling HMM in the 80–20 condition (i.e.,  an
average of 9.95 vs. 4.46 rewards per switch, respectively). Calculating this ratio of rewards per
switch for models simulating behavior in each reward context, we find that the RFLR exceeds the
original HMM in all three (Fig. 7C).  Interestingly, this parallels minimal differences between the
models in  overall  expected reward (Fig.  7C)  and so can be attributed to  the RFLR’s  efficient
reduction in switching. However, both of these models are outperformed by the ideal Bayesian

Fig. 7. Reward per switch ratios differentiate models and policies that all achieve near-maximal expected
reward. (A) Expected reward landscape for the generative RFLR across varying α (y axis) and β (x  axis)
values with the empirically observed τ in each of the three reward conditions (τ

90−10

= 1.25, τ

80−20

= 1.43,
and τ

70−30

= 1.54). Color bars indicate expected reward rate across simulated trials, and isoclines mark
increments above random (0.5). The RFLR-fit α and β values are depicted with the asterisk, and the relative
α and β specified for the HMM lie along the dashed line. (B) Profile of expected reward as a function of α for
varying values of β (color bar, ranging from β = 1 to β = 5, with fit β in black). Expected reward rate at the fit
α  (black vertical  dashed line)  suggests minimal  additional  benefit  of  modulating β.  (C)  (Top)  Expected
reward in each of the three probability contexts for the generative RFLR using mouse-fit parameters and
generative HMM using the true task parameters.  HMM performance is  shown using either  a  greedy or
stochastic (Thompson sampling, TS) policy. (Bottom) Ratio of rewards to switches for each of the three
models across reward probability conditions. Each data point shows the mean across simulated sessions,
and error bars show SE but are smaller than the symbol size.
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agent that uses a greedy policy, indicating that the RFLR’s advantage to maximizing rewards per
switch is only valid under the constraint of a stochastic policy. Thus, under the assumption that
switching ports bears a cognitive and/or physical cost and given a tendency for exploration, the
objective of the mice may not be exclusively reward maximization but rather optimizing the tradeoff
between reward maximization and cost.

Discussion

We find  that  mice  performing  a  two-armed  bandit  task  exhibit  switching  behavior  defined  by
apparent stochasticity, stickiness, and a representation of action value. These components can be
represented in multiple distinct, yet equivalent, models to comprehensively capture both trial-by-
trial switching and port choice behaviors. Furthermore, although mouse behavior deviates from
that of the ideal Bayesian observer, the expected reward for the empirical models is comparable to
that for the ideal agent. Additionally, given a tendency toward exploration, this strategy preserves
high reward rates while minimizing trial-by-trial switches via a choice history bias. Modulating this
level of stickiness captures the adaptive response of mice to different reward contexts, offering a
parsimonious solution to learning new environmental parameters.

Switch Trials Reveal Stochasticity in Mouse Behavior. Many behavioral tasks, including the
two-armed bandit, are described as having components of explore vs. exploit in which an agent at
times exploits existing knowledge and executes an action most likely to lead to reward, whereas at
other times it explores the environment by choosing an action with a less certain outcome that
reveals information about the environment (9, 12, 14, 32–34).

In such tasks, the trials in which the agent switches actions are the manifestation of exploration
and behavioral flexibility (i.e., changes in action due to accumulating information), which are highly
informative components of the behavior. Analysis of these trials provides an important insight by
revealing the apparently  stochastic  nature of  mouse decision making given recent  choice and
reward history: although mice enter a regime of nearly deterministic repetition of actions, they do
not enter a corresponding regime of deterministic switching (i.e., no accumulation of evidence will
consistently  push the mouse to  switch  actions).  Thus,  even following a  series  of  “no reward”
outcomes at a single port, the mouse chooses its next action apparently at random rather than
reliably switching selection to the other port.

This understanding propels our selection of a stochastic policy to capture the tendency of the
mice to make decisions at a rate proportional to their confidence in those decisions. The policy we
fit to behavior balances exploitation of the choice favored by the model estimate and exploration of
the alternative choice (9, 16). The stochasticity we describe is observed under the constraints of
our model variables and history length but does not necessarily characterize the decision to switch
given an unconstrained model (i.e., given a complete history or access to neural activity). Clearly,
at  the extreme, the exact  sequence of  actions and action outcomes expressed by the mouse
leading up to a trial late in a session is likely unique (given the exponential growth in sequence
possibilities as a function of trial number), and thus, it is not possible to determine if the action
choice is stochastic given the full history.

Stochasticity of Behavior Constrains Maximum Predictability of Behavior by Models. There
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has been a recent push in behavioral studies to account for behavioral events at the resolution of
single trials (35). This is a worthwhile goal, especially in evaluating the predictive performance of
behavioral models. However, we found that the stochastic component of behavior given our model
assumptions sets bounds on the predictability of different actions. Therefore, we compared the
performance of  each model  against  the theoretical  probabilities of  predicting each action (i.e.,
expected confusion matrices from the nonparametric model) set by the stochasticity of the mouse
behavior on the same type of trial. In the context of exploratory behavior, the method described
here or  a similar  approach to constraining models under the true distribution of  the data (34)
enables testing of models against realistic boundaries of predictive accuracy.

Stickiness Captures the Deviation of Mouse Behavior from the Optimal Agent. Interestingly,
we find that the model that best recapitulates the mouse behavior, even after the animals have
undergone extensive training, does not use the strategy that maximizes reward in this task (the
HMM with a greedy policy). Single latent variable HMMs can be implemented in artificial neural
networks and therefore, at least in principle, by the brain, so it is unclear why mice do not perform
this optimal strategy (36). An ethological explanation can be proposed from our observation that
using the optimal strategy offers only marginal increases in expected reward over the simple RFLR
(or  analogous  F-Q  model;  74%  vs.  69%  expected  reward,  respectively).  Moreover,  given  a
tendency for exploration or stochasticity, the HMM requires more trials in which the agent switches
between ports to achieve equal reward. This hypothesis suggests that constraints imposed by
learning the task structure and the asymmetric costs associated with the selection or executions of
actions  lead  the  mouse  away  from  the  HMM  implementation.  Additionally,  it  brings  up  an
interesting question as to whether mice have an innate tendency for exploration in environments
with uncertainty (37–40).

We found that a descriptive model, the logistic regression, offered a better fit to mouse behavior
than  the  ideal  observer  model.  This  finding  is  consistent  with  recent  data-driven  modeling  of
rodents behaving in a similar two-armed bandit  task in which the reward contingencies drifted
continuously  from one  trial  to  the  next  (13).  In  that  case,  the  logistic  regression  coefficients
exhibited a similar exponential decay, placing the greatest weight on the most recent actions and
outcomes.  Given  that  both  tasks  involve  reward  contingencies  with  Markovian  dynamics,  we
suspect that a similar connection could be made to a theoretically motivated ideal observer model
performing inference in an HMM and minimizing switching.

In our analysis, the differences between the ideal observer and the data-driven models were
explained by an additional influence of past choice on future choice. We accounted for this by
building  a  sticky  HMM,  which,  by  construction,  produced  equivalent  trial-by-trial  log-odds
predictions as the RFLR. Stickiness has been reported in analyses of behavior across tasks and
species and is also called perseveration, choice history bias, and the law of exercise (13, 23, 24,
40–44). This bias to repeat previous actions offers a parsimonious mechanism for adapting an
existing action policy to novel environmental conditions: we found that in the face of changing
reward probability conditions, mice minimally updated the weight assigned to incoming evidence
and  the  time  constant  of  memory  decay  (β  and  τ,  respectively)  but  instead  modulated  their
behavior by increasing or decreasing their level of perseveration. In the mathematically equivalent
F-Q formulation of reinforcement learning, this change is conserved as the α parameter is directly
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derived from the RFLR. This behavioral adaptation, represented largely by a single parameter,
comes at low cost to the animal in terms of expected reward and therefore may be an efficient
strategy for minimizing effort necessary to learn new behavioral strategies (44–46).

Implications for the Neural Mechanism. One of  the goals of  this study was to increase our
understanding of decision making in order to guide future interrogation of circuit function and the
neural  underpinnings  of  behavior.  However,  the  specific  algorithms that  we found best  fit  the
mouse behavior may or may not be directly implemented in the brain. The demonstration that
multiple distinct  algorithms can similarly  model  behavior underscores this point  and draws our
focus to the features that are shared by the models. We hypothesize that whatever algorithm the
brain relies on for this task, if it is deterministic, then it is combined with a stochastic action policy
to produce the behavior we observe. (Of course, a policy that appears stochastic behaviorally can
have deterministic  neural  origins.)  Recently  developed statistical  methods offer  new means of
determining if and how the features of these behavioral models are encoded in neural activity (47).

Each of  the models that  successfully  recapitulates mouse behavior  relies on an interaction
between choice and reward, consistent with previous accounts of action value encoding in brain
regions  such  as  striatum  and  medial  prefrontal  cortex  (5,  6,  10,  11,  48).  The  action  value
representation in our empirical models notably treats evidence from rewarded and unrewarded
trials asymmetrically. This asymmetry has been previously reported in analysis of mouse evidence
accumulation (16), and it contrasts the behavior of the ideal agent that uses unrewarded trials as
evidence in favor of the alternative option. Investigating whether, and at what level of processing, a
corresponding  asymmetry  exists  in  the  neural  representation  of  reward  will  be  important  for
understanding the nature of reinforcement in learning.

Furthermore, past work has hypothesized that recursive algorithms that compress information
over a sequence of trials to a small number of variables are more neurally plausible (32). Here we
show that some recursive algorithms (i.e., original HMM) struggle to explain switching behavior,
whereas  nonrecursive  models  (i.e.,  logistic  regression)  perform  well.  This  poses  a  potential
challenge to this hypothesis. However, we were able to derive alternative recursive algorithms (i.e.,
RFLR, F-Q model, and sticky HMM) that do accurately explain behavior.

Is there a way to disambiguate these models if they all produce the same behavior? Previous
work  has  shown that  model-based  and  model-free  methods  may exist  in  parallel  but  can  be
distinguished  through  measurements  of  neural  activity  (49).  Behaviorally,  model-based
representations may offer an advantage for overall performance accuracy, but as has been shown
here  and  previously,  the  magnitude  of  this  difference  in  accuracy  is  task-dependent  (50).
Importantly,  model-based implementations come at  a cost  for  cognitive demands (50),  so  this
tradeoff between demand and reward may favor model-based methods in some contexts but not
others.  Additional  contextual  features  may  make  the  implementation  of  particular  models
favorable, such as environments where action outcomes are not symmetric or interdependent. In
this case, the ability to separately approximate the value of each action, as in Q-learning models,
could  be  beneficial.  Furthermore,  in  a  lateralized  task,  this  could  allow  for  lateralized
representations across hemispheres.

More complex behavioral models might predict mouse behavior more accurately than those
discussed here. For example, recent work has shown that mouse behavior in similar tasks is well
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described by drifting or discretely switching policies, suggesting that animal behavior is guided by
time-varying internal states (51, 52). This raises an interesting and perhaps confusing point: as we
seek to understand animal behavior, we must simultaneously infer an animal’s internal state as
well as that animal’s inferences about the external state of the world. Probabilistic models that
bridge descriptive, algorithmic, and theoretically guided characterizations offer a route to resolving
these complexities of animal behavior.

Materials and Methods

Behavior Apparatus. The arena for the two-armed bandit task was inspired by previous work (6).
Behavior  experiments were conducted in  4.9′′  ×  6′′  custom acrylic  chambers.  Each chamber
contained three nose ports with an infrared-beam sensor (Digi-Key, 365-1769-ND) to detect entry
of the snout into the port. A colored light-emitting diode (LED) was positioned above each port. For
the two side ports, water was delivered in 2.5 µL increments via stainless steel tubes controlled by
solenoids  (The  Lee  Co.,  LHQA0531220H).  The  timing  of  task  events  was  controlled  by  a
microcontroller  (Arduino) and custom software (MATLAB). Plans for an updated version of the
behavioral system, including the most recent hardware and software, are available online: https://
edspace.american.edu/openbehavior/project/2abt/ and https://github.com/bernardosabatinilab/two-
armed-bandit-task.

Behavior Task. Wild-type mice (C56BL/6N from Charles River and bred in house) aged 6 to 10 wk
were water restricted to 1 to 2 mL per day prior to training and maintained at >80% of full body
weight. While performing the task, mice moved freely in the chamber. Activation of an LED above
the center port indicated that the mouse could initiate a trial by nose poking into the center port.
Doing so activated LEDs above the two side ports, prompting the mouse to choose to nose poke
to the right or left. The mouse had 2 s to make its selection. Following side port entry, the computer
determined whether or not to deliver a water reward according to the corresponding port reward
probability  and the result  of  pseudorandom number generation.  Withdrawal  from the side port
ended the trial and started an intertrial interval (ITI). The 1-s ITI followed selection, during which
time the system assigned the reward probabilities for the next trial according to a Markov decision
process (0.98 probability that high and low port assignments remained the same, 0.02 probability
the assignments reversed). After the 1-s minimum ITI, the center port LED turned on, and the
mouse was permitted  to  initiate  the  next  trial  (with  no  upper  limit  to  trial  initiation  time).  The
duration  of  each  behavior  session  was  40  min,  over  which  the  mouse typically  earned >350
rewards.  All  training  sessions  were  conducted  in  the  dark  or  under  red  light  conditions.
Experimental  manipulations  were  performed  in  accordance  with  protocols  approved  by  the
Harvard Standing Committee on Animal Care, following guidelines described in the NIH Guide for
the Care and Use of Laboratory Animals.

Conditional Switch Probabilities. To concisely represent  the history preceding each trial,  we
defined a code that captures both action (relative choice direction) and the outcome of that action
(reward or no reward): the letter (a/A vs. b/B) denotes the action, and the case (lower vs. upper)
denotes  the  outcome  with  uppercase  indicating  a  rewarded  trial.  We  define  the  first  choice
direction of the sequence as “A,” so that, depending on reward outcome, choices in this direction
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are also labeled “A/a,” whereas those in the other direction are labeled “B/b.” This code was used
to build “words” (e.g., Aab) that fully specify the action and outcome histories for a given length on
which switch probabilities were conditioned.

Models of Mouse Behavior. All behavior models were trained on 70% of sessions and tested on
the remaining held-out data. For models predicting mouse choice on previous mouse behavior
(Figs. 3–5), model predictions were taken as the mean across 1,000 repetitions on bootstrapped
test data to acquire representative estimates of choice and switch probabilities.

We simulated mouse behavior by implementing the Bayesian agent and RFLR as generative
models. We simulated the task with the location of the high-rewarding port (p = 0.8) determined
by a Markovian process with a transition probability of 0.02 and preserved the session structure
that  the mice experienced,  such that  the number of  trials  in  each session was drawn from a
distribution based on the mouse behavior. Each model was given the same set of sessions and
played until a simulated dataset the same size as the mouse dataset was generated. We ran this
simulation for 1,000 repetitions to create the averaged performance presented in Fig. 6.

For the Bayesian agent, we used the ideal observer given the true task parameters and after
random initialization for the first choice allowed the model to recursively update its belief given its
own actions and associated outcomes to guide future choices. We generated behavior from an
HMM Thompson sampling on its belief to correspond with the stochastic policy of the RFLR, as
well as acting greedily on its belief to represent the ideal observer (Figs. 6B and 7C).  For  the
RFLR, the model played using the fit parameters of the mouse. The expected reward landscape
was calculated by performing a parameter grid search with this simulation.

Complete mathematical details are given in SI Appendix, Text.

Data Availability

The behavioral dataset is publicly available at the Harvard Dataverse (https://doi.org/10.7910/DVN/7E0NM5)
(53).  The  code  for  analyzing  this  data  is  publicly  available  at  GitHub,  https://github.com/
celiaberon/2ABT_behavior_models. All other study data are included in the article and/or SI Appendix.
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